Answer:
1.8 cm
Explanation:
= mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg
= charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C
=Potential difference through which the ion is accelerated = 215 V
= Speed of the ion
Using conservation of energy
Kinetic energy gained by ion = Electric potential energy lost

= Radius of the path followed by ion
= Magnitude of magnetic field = 0.522 T
the magnetic force on the ion provides the necessary centripetal force, hence

Answer:
B.) a wheel and axle and a lever
Explanation:
P.S - The exact question is -
Given - A wheelbarrow can be used to help lift a load, such as a pile of dirt, and then push the load across a distance. A man pushes a wheelbarrow.
To find - Which simple machines make up a wheelbarrow?
A.) a pulley and an inclined plane
B.) a wheel and axle and a lever
C.) a pulley and a wheel and axle
D.) a lever and a wedge
Proof -
The correct option is - B.) a wheel and axle and a lever
Wheelbarrows are used to carry more goods from place to place by using minimal force as compared when goods are carried by hand.
With this machine, During hauling people can save time.
Answer:
It allows us to understand nature much more deeply than does qualitative description alone.
Explanation:
Without explaining the measurements, a quantity cannot always be measured.
Hope this helped, and please mark as Brainliest :)
Answer:
The speed of the boxes are 1 m/s.
Explanation:
Given that,
Mass of box = 1 kg
Mass of another box = 2 kg
Suppose 1 kg box moves with 3 m/s speed.
We need to calculate the speed of the boxes
Using formula of conservation of momentum

Where, u = initial velocity
v = final velocity
Put the value into the formula



Hence, The speed of the boxes are 1 m/s.
Answer:
a. Speed = 342.5 meters per seconds.
b. Wavelength = 2.0 meters
Explanation:
Given the following data;
Distance = 100m
Time = 292 milliseconds to seconds = 292/1000 = 0.292 seconds
Frequency = 171 Hz
a. To find the speed of sound in air;
Speed = distance/time
Speed = 100/0.292
Speed = 342.5 m/s
b. To find the wavelength;
Wavelength = speed/frequency
Wavelength = 342.5/171
Wavelength = 2.0 m