Answer:
Time period of oscillations is 0.62 s
Explanation:
Due to suspension of weight the change in the length of the spring is given as


now we know that spring is stretched due to its weight so at equilibrium the force due to weight is counter balanced by the spring force



Now the period of oscillation of spring is given as

Now plug in all values in it


bobo mag isip ayaw mag aral bobi
Explanation:
bobo ka boboboboboob
Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
The energy is 3.06 electronvolts, E = 3.06eV
1eV = 1.6 * 10^-19 J
3.06 eV = 3.06* 1.6 * 10^-19 J = 4.896 * 10^-19 J
If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil
In short, Your Answer would be: "Zero"
Hope this helps!