Answer:
Particles in a solid object are super tight and close to eachother. They do not move past eachother because it is a solid, not a liquid or gas.
Explanation:
Answer:
scale. Mercury thermometers can be used to determine body, liquid, and vapor temperature.
The name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
<h3>Nomenclature of Organic compounds</h3>
From the question, we are to determine the name of the given molecule.
To name the compound, we will follow the IUPAC rules.
Some of IUPAC rules are
- Find the longest continuous carbon chain. Determine the root name for this parent chain.
- For Alkenes (organic compounds with double bond), number the chain of carbons that includes the C=C so that the C=C has the lower position number. Change “ane” to “ene” and assign a position number to the first carbon of the C=C.
The given compound has 8 carbons and a double bond. The root name of the compound is octane.
By <u>IUPAC rules</u>, the compound is an <u>Octene</u>.
Since the double bond is between carbon-1 and carbon-2. The compound becomes 1-octene.
Hence, the name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
Learn more on Nomenclature of Organic compounds here: brainly.com/question/26754333
The diagram for the compound is attached below.
The ozone layer of the Earth's atmosphere is what protects living things from too much ultraviolet radiation, if that's what you're asking about.
Answer:
(A) 0.129 M
(B) 0.237 M
Explanation:
(A) The reaction between potassium hydrogen phthalate and barium hydroxide is:
- 2HA + Ba(OH)₂ → BaA₂ + 2H₂O
Where A⁻ is the respective anion of the monoprotic acid (KC₈H₄O₄⁻).
We <u>convert mass of phthalate to moles</u>, using its molar mass:
- 0.978 g ÷ 156 g/mol = 9.27x10⁻³ mol = 9.27 mmol
Now we <u>convert mmol of HA to mmol of Ba(OH)₂</u>:
- 9.27 mmol HA *
= 6.64 mmol Ba(OH)₂
Finally we calculate the molarity of the Ba(OH)₂ solution:
- 6.64 mmol / 35.8 mL = 0.129 M
(B) The reaction between Ba(OH)₂ and HCl is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
So<u> the moles of HCl that reacted </u>are:
- 17.1 mL * 0.129 M *
= 4.41 mmol HCl
And the <u>molarity of the HCl solution is</u>:
- 4.41 mmol / 18.6 mL = 0.237 M