Answer:
60.
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer: 27.7 square inches.
Step-by-step explanation:
Let 'a' be the side of equilateral triangle.
Then the perimeter of the triangle = a+a+a=3a
Given: Perimeter of the equilateral triangle = 24 inches We know that the area of a equilateral triangle is given by :-
the equilibrium point, is when Demand = Supply, namely, when the amount of "Q"uantity demanded by customers is the same as the Quantity supplied by vendors.
That occurs when both of these equations are equal to each other.
let's do away with the denominators, by multiplying both sides by the LCD of all fractions, in this case, 12.
![\bf \stackrel{\textit{Supply}}{-\cfrac{3}{4}Q+35}~~=~~\stackrel{\textit{Demand}}{\cfrac{2}{3}Q+1}\implies \stackrel{\textit{multiplying by 12}}{12\left( -\cfrac{3}{4}Q+35 \right)=12\left( \cfrac{2}{3}Q+1 \right)} \\\\\\ -9Q+420=8Q+12\implies 408=17Q\implies \cfrac{408}{17}=Q\implies \boxed{24=Q} \\\\\\ \stackrel{\textit{using the found Q in the Demand equation}}{P=\cfrac{2}{3}(24)+1}\implies P=16+1\implies \boxed{P=17} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{Equilibrium}{(24,17)}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7BSupply%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%7D~~%3D~~%5Cstackrel%7B%5Ctextit%7BDemand%7D%7D%7B%5Ccfrac%7B2%7D%7B3%7DQ%2B1%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20by%2012%7D%7D%7B12%5Cleft%28%20-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%20%5Cright%29%3D12%5Cleft%28%20%5Ccfrac%7B2%7D%7B3%7DQ%2B1%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%20-9Q%2B420%3D8Q%2B12%5Cimplies%20408%3D17Q%5Cimplies%20%5Ccfrac%7B408%7D%7B17%7D%3DQ%5Cimplies%20%5Cboxed%7B24%3DQ%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20found%20Q%20in%20the%20Demand%20equation%7D%7D%7BP%3D%5Ccfrac%7B2%7D%7B3%7D%2824%29%2B1%7D%5Cimplies%20P%3D16%2B1%5Cimplies%20%5Cboxed%7BP%3D17%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7BEquilibrium%7D%7B%2824%2C17%29%7D~%5Chfill)