Answer:

Explanation:
The index of refraction is equal to the speed of light c in vacuum divided by its speed v in a substance, or
. For our case we want to use
, which for our values is equal to:

Which we will express with 3 significant figures (since a product or quotient must contain the same number of significant figures as the measurement with the <em>least</em> number of significant figures):

Answer: Scanning Tunneling Microscope
Explanation:
The answer is, of course, the greatest Star Trek fan art imaginable: images literally built out of individual atoms. The images are the work of IBM scientists who created the unique artwork with a two-ton machine called the Scanning Tunneling Microscope that moves single atoms across a tiny piece of copper.
Answer: Stationary or constant velocity
Explanation:
Objects with balanced forces acting on them experience no change in motion, or no acceleration. So these objects could either be stationary at rest or have a constant velocity. These include a hanging object, a floating object, an object on a table that doesn't move, and a car moving at a constant 10 mph
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately.
Answer:
I don't know sorry For this question