Answer:
Channeling often occurs in a packed tower This phenomenon takes place when the. ... ------------EFFECT IN TOWERS AND COLUMNS Towers or columns are the ... instruments such as HPLC(high performance liquid chromatography-columns )
Explanation:
LIKE DISSOLVES LIKE. Since Ccl4 is non-polar, it'll be soluble in any non-polar solvent. Hope this helps you!
Answer : The correct option is, (C) 10-mL volumeric pipet.
Explanation :
Graduated cylinder : It is a measuring cylinder that is used to measure the volume of a liquid. It has a narrow cylindrical shape. The marked line drawn on the graduated cylinder shows the amount of liquid that has been measured.
Pipet : It is a type of laboratory equipment that is used to measure the volume of a liquid. It is small glass tube and the marked line drawn on the pipet. It is used to accurately measure and transfer of volume of liquid from one container to another.
Volumetric flask : It is a type of laboratory tool that is also used for measuring the volume of liquid. It is used to make up a solution to a known volume. It measure volumes much more precisely than beakers.
Beaker : It is a type of laboratory equipment that has cylindrical shape and it is used for the mixing, stirring, and heating of chemicals.
As per question, we conclude that the pipet is most precise than other devices because in pipet the marking lines are more accurate. Thus, it can be used to measure volume to precision.
Hence, the correct option is, (C) 10-mL volumeric pipet.
The answer from this questions is the letter
B. He should not use his opinions as evidence.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW