Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.
Answer:
The answer is 0.0698 M
Explanation:
The concentration was prepared by a serial dilution method.
The formula for the preparation I M1V1 = M2V2
M1= the concentration of the stock solution = 0.171 M
V1= volume of the stock solution taken = 200 mL
M2 = the concentration produced
V2 = the volume of the solution produced = 940 mL
Substitute these values in the formula
0.171 × 200 = 490 × M2
34.2 = 490 × M2
Make M2 the subject of the formula
M2 = 34.2/490
M2 = 0.069795
M2 = 0.0698 M ( 3 s.f)
The concentration of the Chemist's working solution to 3 significant figures is 0.0698M
when using a jack it lifts up the car for you, giving you the ability to remove and replace a tire without the weight of the car on the tire.
Answer: The photosynthesis equation is as follows: 6CO2 + 6H20 + (energy) → C6H12O6 + 6O2 Carbon dioxide + water + energy from light produces glucose and oxygen.
Explanation: Photosynthesis is comprised of two stages, the light-dependent reaction and the light-independent reactions, so that for the light suports energy.
Hope this helps:)
Answer:
See explanation.
Explanation:
Hello,
Haber process is defined as the widely acknowledged productive process of ammonia by the reaction:

Which is carried out in gaseous phase. Thus, by means of the Le Chatelier's principle, it is possible to know that its standard enthalpy of reaction is -45.90 kJ/mol (NIST webbook) for which it is an exothermic chemical reaction, for that reason less ammonia will be produced at high temperature, nonetheless, the temperature should not be too low since the reaction rate significantly decrease, therefore, the optimum found temperature is 450 °C.
Moreover, since there are more moles (3+1=4) at the reactants and less moles at the products (2), increasing the pressure of the reaction increases the yield of ammonia, nonetheless, higher pressures involve the purchasing of more expensive equipment to withstand the high-pressures, for that reason, the best found pressure has been set as 200 atm.
Best regards.