Hydrogen-1, Carbon-13, Nitrogen-15, Fluorine-19, and Phosphorus-31 are the most useful. Out of these, Hydrogen-1 and Carbon-13 in NMR are the most useful nuclei because the these atoms are the most commonly present in organic molecules.
Answer:- The hydroxide ion concentration of the solution is
.
Solution:- The formula used to calculate pOH from hydroxide ion is:
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
When pOH is given and we are asked to calculate hydroxide ion concentration then we multiply both sides by negative sign and take antilog and what we get on doing this is:
![[OH^-]=10^-^p^O^H](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5Ep%5EO%5EH)
pOH is given as 5.71 and we are asked to calculate hydrogen ion concentration. Let's plug in the given value in the formula:
![[OH^-]=10^-^5^.^7^1](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5E5%5E.%5E7%5E1)
= 0.00000195 or 
So, the hydroxide ion concentration of the solution is
.
<span>The first method to determine the chemical composition of a substance in space was using light. By determining red shift in the observed spectrum of light they could determine the elements they were observing. Different elements change the way light behaves and from this scientists can determine the makeup of things such as stars and nebulas.</span>
It would be MnSO4
The (II) lets you know it’s the form with a 2+ charge and Sulfate has a 2- charge
These will cancel out making it plain MnSO4
If it was manganese (iii) sulfide the answer would be Mn2(SO4)3