Answer:
4.6 years
Explanation:
This is solved using Kepler's third law which says:

Where
T = Orbital period of the planet (in seconds)
a = Distance from the star (in meters)
G = Gravitational constant
M = Mass of the parent star (in kg)
From the information given



We put this into Kepler's law and get:

This when converted to years is 4.6 years.
Choices 1, 2, and 4 . . . . . Yes
Choices 3 and 5 . . . . . No
Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.