Explanation:
(a) Formula to calculate the density is as follows.

= 
= 
Now, calculate the charge as follows.

= 
=
C
or, = 101.06 nC
(b) For r = 6.50 cm, the value of charge will be calculated as follows.

= 
= 7.454 
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
Answer:
Six meters refers to the distance the baseball travels in one second.
Explanation:
6 m/s means that every second, the baseball travels 6m. So, 6 meters is the distance traveled in one second.
The sun emits electromagnetic radiation so I think they are electromagnetic waves.
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change