For the answer to the question above,
we can get the number of fringes by dividing (delta t) by the period of the light (Which is λ/c).
fringe = (delta t) / (λ/c)
We can find (delta t) with the equation:
delta t = [v^2(L1+L2)]/c^3
Derivation of this formula can be found in your physics text book. From here we find (delta t):
600,000^2 x (11+11) / [(3x10^8)^3] = 2.93x10^-13
2.93x10^-13/ (589x10^-9 / 3x10^8) = 149 fringes
This answer is correct but may seem large. That is because of your point of reference with the ether which is usually at rest with respect to the sun, making v = 3km/s.
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in the above equation
So,

Hence, this is the required solution.
Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
You use the equation Velocity = Acceleration X Time. 4x4=16m/s.
The car travels 18m in 3 seconds.
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>