Answer:
Explanation:
A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell outwardly oriented and end at negatively charged shell .
B )
distance between the centres of spherical shell
= 2 a
potential energy of charges
= k q₁ x q₂ / R
= k x - Q x Q / ( 2a )
= - k Q²/ 2a
So work needed to separate them to infinity will be equal to
= k Q²/ 2a
A stone is thrown vertically upward with a speed of 17.0 m/s. How fast is it moving when it reaches a height of 11.0 m? How long is required to reach this height?
Let’s review the 4 basic kinematic equations of motion for constant acceleration (this is a lesson – suggest you commit these to memory):
s = ut + ½ at^2 …. (1)
v^2 = u^2 + 2as …. (2)
v = u + at …. (3)
s = (u + v)t/2 …. (4)
where s is distance, u is initial velocity, v is final velocity, a is acceleration and t is time.
In this case, we know u = 17.0m/s, a = -g = -9.81m/s^2, s = 11.0m and we want to know v and t, so from equation (2):
v^2 = u^2 + 2as
v^2 = 17.0^2 -2(9.81)(11.0)
v = √73.18 = 8.55m/s
now from equation (3):
v = u + at
8.55 = 17.0 – 9.81t
t = (8.55 – 17.0)/(-9.81) = 0.86s
Answer:
t = T/4
Explanation:
The power delivered to the mass by the spring is work done by the spring per second.

The work done by the spring is equal to the elastic potential energy stored in the spring.

The maximum energy stored in the spring is at the amplitude of the oscillation.

So the first time the mass reaches to its amplitude can be found by the following equation of motion:

When the mass reaches the amplitude:

because cos(π) = 1.

Using ω = 2π/T,

V=D/T
V is speed
D is distance
T is time
V=D/T
31.67 m/s = 1361.81 m / T
31.67/31.67=1361.81/31.67
T=43 seconds
Hope this helps
Answer:
An element is a pure substance and is found on the periodic table. If you have more than one element chemically bonded, it is a compound. ... H2O is a compound
Explanation: