Answer:
The ratio of kinetic energies of 5 kg object to 20 kg object is 1:1.
Explanation:
Kinetic energy is defined as energy possessed by an object due to its motion.It is calculated by:

Kinetic energy of the 5 kg object.
Mass of object,m = 5 kg
Velocity of an object = v

Kinetic energy of the 20 kg object.
Mass of object,m' = 20 kg
Velocity of an object = v'

The ratio of the kinetic energy of the 5 kilogram object to the kinetic energy of the 20-kilogram object:

Given that, v = 2v'

The ratio of kinetic energies of 5 kg object to 20 kg object is 1:1.
Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
Answer:
4.163 m
Explanation:
Since the length of the bridge is
L = 380 m
And the bridge consists of 2 spans, the initial length of each span is

Due to the increase in temperature, the length of each span increases according to:

where
is the initial length of one span
is the temperature coefficient of thermal expansion
is the increase in temperature
Substituting,

By using Pythagorean's theorem, we can find by how much the height of each span rises due to this thermal expansion (in fact, the new length corresponds to the hypothenuse of a right triangle, in which the base is the original length of the spand, and the rise in heigth is the other side); so we find:

A parsec is a measurement of distance.
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.