Answer:
f = 409 Hz
Explanation:
We have,
Length of the open organ pipe, l = 0.29 m
Frequency of vibration of second overtone, 
It is required to find the fundamental frequency of the pipe. For the open organ pipe, the frequency of second overtone is given by :

v is speed of sound
Let f is the fundamental frequency. It is given by :

The relation between f and f₂ can be written as :

So, the fundamental frequency of the pipe is 409 Hz.
Frequency = 1/period. ... 1 / 18 sec = (1/18) per sec. That's 0.056 per sec or 0.056 Hz. (rounded)
(5.6 x 10^-2 Hz)
The words "... as shown ..." tell us that there's a picture that goes along
with this question, and you decided not to share it. That's sad and
disappointing, but I think the question can be answered without seeing
the picture.
The net force on the crate is zero. Evidence for this is that fact that
the crate is just sitting there. If the net force on an object is not zero,
then the object is accelerating ... it's either speeding up, slowing down,
or its the direction of its motion is changing. If none of these things is
happening, then the net force on the object must be zero.
Answer: because of friction it will stop rolling completly
Explanation:
Answer:
The maximum error is 
Explanation:
From the question we are told that
The length is 
The radius is 
The pressure is 
The rate is 
The viscosity is 
The error in the viscosity is mathematically represented as

Where 
and 
and 
So
![\Delta \eta = \frac{\pi}{8} [ |\frac{r^4}{v} | * \Delta P + | \frac{4 * P * r^3}{v} |* \Delta r + |-\frac{P* r^4}{v^2} |* \Delta v]](https://tex.z-dn.net/?f=%5CDelta%20%20%5Ceta%20%20%3D%20%5Cfrac%7B%5Cpi%7D%7B8%7D%20%5B%20%7C%5Cfrac%7Br%5E4%7D%7Bv%7D%20%20%7C%20%2A%20%20%5CDelta%20%20P%20%20%20%2B%20%20%20%20%7C%20%5Cfrac%7B4%20%2A%20%20P%20%2A%20r%5E3%7D%7Bv%7D%20%20%7C%2A%20%20%5CDelta%20%20r%20%2B%20%20%7C-%5Cfrac%7BP%2A%20r%5E4%7D%7Bv%5E2%7D%20%20%7C%2A%20%20%5CDelta%20%20v%5D)
substituting values
![\Delta \eta = \frac{\pi}{8} [ |\frac{(0.002)^4}{0.5*10^{-9}} | * 1750 + | \frac{4 * 4 *10^{5} * (0.002)^3}{0.5*10^{-9}} |* 0.0002 + |-\frac{ 4*10^{5}* (0.002)^4}{(0.5*10^{-9})^2} |* 0 ]](https://tex.z-dn.net/?f=%5CDelta%20%20%5Ceta%20%20%3D%20%5Cfrac%7B%5Cpi%7D%7B8%7D%20%5B%20%7C%5Cfrac%7B%280.002%29%5E4%7D%7B0.5%2A10%5E%7B-9%7D%7D%20%20%7C%20%2A%20%201750%20%20%20%2B%20%20%20%20%7C%20%5Cfrac%7B4%20%2A%20%204%20%2A10%5E%7B5%7D%20%2A%20%280.002%29%5E3%7D%7B0.5%2A10%5E%7B-9%7D%7D%20%20%7C%2A%20%200.0002%20%2B%20%20%7C-%5Cfrac%7B%204%2A10%5E%7B5%7D%2A%20%280.002%29%5E4%7D%7B%280.5%2A10%5E%7B-9%7D%29%5E2%7D%20%20%7C%2A%20%200%20%5D)
![\Delta \eta = \frac{\pi}{8} [56 + 5120 ]](https://tex.z-dn.net/?f=%5CDelta%20%20%5Ceta%20%20%3D%20%5Cfrac%7B%5Cpi%7D%7B8%7D%20%5B56%20%20%2B%20%205120%20%5D)

