Answer:
1.5 kgms⁻¹
Explanation:
Momentum can be defined as "<em>mass in motion</em>."
The amount of momentum that an object has is dependent upon two factors
- mass of the moving object
when there is a change in the velocity , it creates a change in momentum also
when we consider that we can mathematically show this,In terms of an equation,
Change in momentum (ΔΡ) = m(Δv)
where (Δv) - change in velocity
<em>(Δv) = final velocity - initial velocity</em>
Change in momentum (ΔΡ) = m(Δv)
= 0.1×([55-40])
= 1.5 kgms⁻¹
Answer:
B
Explanation:
The correct answer is B) have unlike charges. Since they are attracted to each other they have to be unlike
Answer:
139.6m/s
Explanation:
Calculate the tension first, T=m*g
mass(m): 1750kg, gravity(g): 9.8m/s^2
T= 1750*9.8
=17150N
Then calculate the wave speed using the equation v = √ (T/μ)
v= √(17150N)/(0.88kg/m)
=139.6m/s
Answer:
The block will not move.
Explanation:
We'll begin by calculating the frictional force. This can be obtained as follow:
Coefficient of friction (µ) = 0.6
Mass of block (m) = 3 Kg
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (R) = mg = 3 × 10 = 30 N
Frictional force (Fբ) =?
Fբ = µR
Fբ = 0.6 × 30
Fբ = 18 N
From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.
Uhhhh...you should have paid attention in class, just saying...