The change in state from Liquid ➡ gas describes the process of evaporation.
Greater amplitude waves have more energy and greater intensity, so they sound louder. ... The same amount of energy is spread over a greater area, so the intensity and loudness of the sound is less. This explains why even loud sounds fade away as you move farther from the source.
According to
Graham's Law of Diffusion," Diffusion of Gas is inversely proportional to square root of its Molecular Mass or Density".
rᵇ/rᵃ =

Or,
rᵇ/rᵃ =

----- (1)
As,
Ma = 275 g/mol
Mb = 205 g/mol
Putting Values in eq.1,
rᵇ/rᵃ =

rᵇ/rᵃ = 1.15
Result: Perfume B will diffuse 1.15 times faster than
Perfume A. Hence, Perfume B will be first smelled by the person.
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g