Answer:
The answer would be B) The Same
Explanation:
Not gonna lie I checked my class notes but I figured this would help :)
Good luck!!!
Answer:
129.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 346 m / sec
wavelength ( λ ) = 2.69 m
We have to calculate Frequency ( f ) :
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 346 / 2.69 Hz
= > f = 34600 / 269 Hz
= > f = 129.74 Hz
Hence, frequency of sound is 129.74 Hz.
Answer:
The force exerted by the biceps is 143.8 kgf.
Explanation:
To calculate the force exerted by the biceps, we calculate the momentum in the elbow.
This momentum has to be zero so that her forearm remains motionless.
Being:
W: mass weight (6.15 kg)
d_W= distance to the mass weight (0.425 m)
A: weight of the forearm (2.25 kg)
d_A: distance to the center of mass of the forearm (0.425/2=0.2125 m)
H: force exerted by the biceps
d_H: distance to the point of connection of the biceps (0.0215 m)
The momemtum is:

The force exerted by the biceps is 143.8 kgf.
<span>The word that musicians use for </span>frequency<span> is </span>pitch<span>. The shorter the wavelength, the higher the </span>frequency<span>, and the higher the </span>pitch<span>, of the </span>sound<span>. In other words, short waves </span>sound<span> high; long waves </span>sound<span> low.</span>
Answer:
356 000 J
Explanation:
Total Energy released
= Energy released when water cools to 0 + Energy released when water is converted to ice at 0
= mcT + ml
= (0.5)(4200)(90-0) + (0.5)(334 000)
= 189 000 J + 167 000 J
= <u>3</u><u>5</u><u>6</u><u> </u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>