Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
a = 1.68m/
Explanation:
Please kindly find the attached file for explanations
When a psychologist simply records the relationship between two variables without manipulating them, it is called a correlational study.
The observed relationship does not by itself reveal which variable causes the other. This is the directionally problem. Also, the relationship may be due to a third variable controlling both of the observed variables.
Answer: (b)
Explanation:
Given
Original length of the rod is 
Strain experienced is 
Strain is the ratio of the change in length to the original length

Therefore, new length is given by (Considering the load is tensile in nature)

Thus, option (b) is correct.