1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
11

A series circuit contains four light bulbs. The switch is opened and one of the bulbs is removed, but not replaced. Then the swi

tch is closed again. What would you expect to see?
Physics
1 answer:
CaHeK987 [17]3 years ago
5 0

Answer:

The three remaining light bulbs will remain dark.

Explanation:

Current can only flow if there is a complete circuit through all of the series elements. With one element removed, no current can flow, so the remaining light bulbs cannot light up.

You might be interested in
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
3 years ago
How much energy from the sun actually reaches the corn answer?
Serhud [2]
The energy from the sun that reaches the corn is about two billionths.
3 0
3 years ago
Read 2 more answers
Which of the following best characterizes an electron?
barxatty [35]
A, electrons are negatively charged and do orbit around the nucleons
4 0
3 years ago
Read 2 more answers
Definition of angle of incidence​
Nadusha1986 [10]
The definition of incidence is In geometric optics, the angle of incidence is the angle between a ray incident on a surface and the line perpendicular to the surface at the point of incidence, called the normal.
3 0
3 years ago
A 6 kg box with initial speed 5 m/s slides across the floor and comes to a stop after 1.9 s. What is the coefficient of kinetic
Ilia_Sergeevich [38]

Answer:

\mu_k=0.27

Explanation:

According to the free body diagram, in this case, we have:

\sum F_x:-F_k=ma\\\sum F_y:N=mg

Recall that the force of friction is given by:

F_k=\mu_k N

Replacing and solving for the coefficient of kinetic friction:

-\mu_kN=ma\\-\mu_k(mg)=ma\\\mu_k=-\frac{a}{g}

We have an uniformly accelerated motion. Thus, the acceleration is defined as:

a=\frac{v_f-v_0}{t}\\a=\frac{0-5\frac{m}{s}}{1.9s}\\a=-2.63\frac{m}{s^2}

Finally, we calculate \mu_k:

\mu_k=-\frac{-2.63\frac{m}{s^2}}{9.8\frac{m}{s^2}}\\\mu_k=0.27

4 0
3 years ago
Other questions:
  • Tony is driving a truck of mass 2.00 × 103 kilograms to the west with a velocity of 14.0 meters/second. He collides with a car o
    9·2 answers
  • Air at 20°c (1 atm) enters into a 5-mm-diameter and 10-cm long circular tube at an average velocity of 5.4 m/s. the tube wall is
    7·1 answer
  • A 10.0g piece of copper wire, sitting in the sun reaches a temperature of 80.0 C. how many Joules are released when the copper c
    12·1 answer
  • One of the leading causes of permanent damage leading to hearing impairment is _____.
    6·2 answers
  • Which transformation of energy occurs in a hydroelectric power plant? A. Potential to chemical energy B. Chemical to potential e
    10·2 answers
  • Someone help me , is it qualitative or quantitative.
    11·1 answer
  • A disk between vertebrae in the spine is subjected to a shearing force of 600 N. Find its shear deformation, taking it to have a
    13·1 answer
  • The amount of energy absorbed by the substance and is generated by heat is called____________ energy. Matter or arrangement or t
    6·2 answers
  • How fast is a car going if it accelerates at 10m/s/s for 4 seconds
    8·1 answer
  • 12. A roller coaster is sitting at the top of a 80 m hill and has 94646J. What is its mass?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!