Years of research have demonstrated that rats are intelligent creatures who experience pain and pleasure, care about one another, are able to read the emotions of others, and would assist other rats, even at their own expense.
<h3>Experiments:</h3>
In trials carried out at Brown University in the 1950s, rats were trained to press a lever for food, but they stopped pressing the lever when they noticed that with each press, a rat in an adjacent cage would scream in pain (after experiencing an electric shock).
Rats were trained to press a lever to lower a block that was hanging from a hoist by electric shocks administered by experimenters. A rat was subsequently hoisted into a harness by the experimenters, and according to their notes, "This animal normally shrieked and wriggled sufficiently while dangling, and if it did not, it was jabbed with a sharp pencil until it exhibited indications of discomfort." Even if it wasn't in danger of receiving a shock, a rat watching the scenario from the floor would pull a lever to lower the hapless rodent to safety.
Learn more about experiments on rats here:
brainly.com/question/13625715
#SPJ4
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is

<span>F x L = W x X whereW=weight is total load = 80, L is length from fulcrum which is the unknown and what we are solving for. x= length we know. and F equals 50 force we know. So (W*X)/F=LL equals 64</span>