From the average speed you can fix an equation:
Average speed = distance / time
You know the average speed = 65.1 kg / h, then
65.1 = distance / total time,
where total time is the time traveling plus 22.0 minutes
Call t the time treavelling and pass 22 minutes to hours:
65.1 = distance / [t + 22/60] ==> distance = [t + 22/60]*65.1
From the constant speed, you can fix a second equation
Constant speed = distance / time traveling
94.5 = distance / t ==> distance = 94.5 * t
The distance is the same in both equations, then you have:
[t +22/60] * 65.1 = 94.5 t
Now you can solve for t.
65.1t + 22*65.1/60 = 94.5t
94.5t - 65.1t = 22*65.1/60
29.4t = 23.87
t = 23.87 / 29.4
t = 0.812 hours
distance = 94.5 km/h * 0.812 h = 76.7 km
Answers: 1) 0.81 hours, 2) 76.7 km
Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.
Answer:
Fy=107.2 N
Explanation:
Conceptual analysis
For a right triangle :
sinβ = y/h formula (1)
cosβ = x/h formula (2)
x: side adjacent to the β angle
y: opposite side of the β angle
h: hypotenuse
Known data
h = T = 153.8 N : rope tension
β= 44.2°with the horizontal (x)
Problem development
We apply the formula (1) to calculate Ty : vertical component of the rope force.
sin44.2° = Ty/153.8 N
Ty = (153.8 N ) *(sen44.2°)= 107.2 N directed down
for equilibrium system
Fy= Ty=107.2 N
Fy=107.2 N upward component of the force acting on the stake