This is EXACTLY the same scenario as the skydiver jumping
out of the airplane, except the whole thing is turned on its side.
==> The skydiver leaves the airplane.
The force of gravity on him (his weight) makes him accelerate down.
But the air resists his downward motion.
The faster he falls, the more UPWARD force the air exerts on him.
The more upward force the air exerts, the less he accelerates down.
When his falling speed is great enough, he stops accelerating, and
falls with a constant speed. He calls that speed his 'terminal velocity'.
==> The submarine turns on its engines, at maximum power.
The force of the engines makes the sub accelerate forward.
But the water resists its forward motion.
The faster it moves, the more BACKWARD force the water exerts on it.
The more backward force the water exerts, the less it accelerates forward.
When the forward speed is great enough, it stops accelerating, and moves
with a constant speed. I don't know if they use the same term in submarines,
but you might say that speed is the 'terminal velocity' in water.
Answer:
the correct answer is B
Explanation:
The kinetic model of the movement describes that the movement of the molecules increases with the increase of their internal energy, which in a macroscopic sample is reflected in an increase in the temperature of the sample.
The sample graph shows the function of temperature over time, which is why our kinetic model establishes that there is an increase in the movement of water molecules.
Consequently the correct answer is B
Answer:
h = 157.70 meters
Explanation:
Given the following data;
Mass = 5.5 kg
Gravitational potential energy = 8500 Joules
We know that acceleration due to gravity is equal to 9.8 m/s².
To find the height of the object;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the formula, we have;
8500 = 5.5*9.8*h
8500 = 53.9h
h = 8500/53.9
h = 157.70 m
Answer:
45.13 beats/min
Explanation:
Speed of space vehicle = 0.51c
the pulse rate measured by the astronaut= 61.0 beats per minute
Pulse rate measured by the Earth observer is given by

putting vales we get

= 45.13 beats/min