Answer:
90 C
Explanation:
Electric current: This can be defined as the rate of flow of electric charge in a circuit. This can be expressed mathematically as,
I = dQ/dt
dQ = Idt
∫dQ = ∫Idt
Q = It................................ Equation 1
Where Q = amount of charge, I = current, t = time.
Given: I = 3.6 A, t = 25 s.
Substituting into equation 1,
Q = 3.6(25)
Q = 90 C.
Hence the amount of charge passing through the cross section of the conductor = 90 C
Answer:
a) 2nd case rate of rotation gives the greater speed for the ball
b) 1534.98 m/s^2
c) 1515.04 m/s^2
Explanation:
(a) v = ωR
when R = 0.60, ω = 8.05×2π
v = 0.60×8.05×2π = 30.34 m/s
Now in 2nd case
when R = 0.90, ω = 6.53×2π
v = 0.90×6.53×2π = 36.92 m/s
6.35 rev/s gives greater speed for the ball.
(b) a = ω^2 R = (8.05×2π)^2 )(0.60) = 1534.98 m/s^2
(c) a = ω^2 R = (6.53×2π)^2 )(0.90) = 1515.05 m/s^2
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Answer:
I feel exited and happy I enjoy it with my friend