By working with percentages, we want to see how many inches is the center of gravity out of the limits. We will find that the CG is 1.45 inches out of limits.
<h3>What are the limits?</h3>
First, we need to find the limits.
We know that the MAC is 58 inches, and the limits are from 26% to 43% MAC.
So if 58 in is the 100%, the 26% and 43% of that are:
- 26% → (26%/100%)*58in = 0.26*58 in = 15.08 in
- 43% → (43%/100%)*58in = 0.43*58 in = 24.94 in.
But we know that the CG is found to be 45.5% MAC, then it measures:
(45.5%/100%)*58in = 0.455*58in = 26.39 in
We need to compare it with the largest limit, so we get:
26.39 in - 24.94 in = 1.45 in
This means that the CG is 1.45 inches out of limits.
If you want to learn more about percentages, you can read:
brainly.com/question/14345924
A) the final velocity = 66/9 m/s.
b) The total momentum before and after collision is the same because energy is destroyed or made.
Thanks brainly. <span />
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m
Kinetic energy than parked