Prevailing definitions of climate are not much different from “the climate is what you expect, the weather is what you get”. Using a variety of sources including reanalyses and paleo data, and aided by notions and analysis techniques from Nonlinear Geophysics, we argue that this dictum is fundamentally wrong. <span>In addition to the weather and climate, there is a qualitatively distinct intermediate regime extending over a factor of ≈ 1000 in scale.Climate changes is projected to affect individual organisms, populations, ... Overall, there is a strong correlation between topographic slope and velocity from ... the ecosystems they live in—will adapt to these changes, or if they even can.</span>
83 km/h * 2.5 hours (3:30 - 1:00) = 207.5 km
207.5 km - 15 km = 192.5 km
To solve this problem we will proceed to use the equations given for the calculation of the resistance, in order to find the radius of the cable. Once the length is found we can find the number of turns of the solenoid and finally the net length of it
The resistance of the wire is

= Resistivity
L = Length
A = Cross-sectional Area
That can be also expressed as,

Rearranging the equation for the length of the wire we have



The number of turns of the solenoid is
Denominator is equal to the circumference of the loop


Finally the Length of he solenoid is

Where \phi is the diameter of wire



Therefore the length of the solenoid is 7.532m
Answer: 272.82 drop/tile
Explanation:
Given that the Rain drops fall on a tile surface at a density of 4638 drops/ft2. There are 17 tiles/ft2. How many drops fall on each tile?
Tiles/ft^2 × drop/tiles = drop/ft^2
Tiles will cancel out. Leaving the answer to be drop/ ft^2
Substitutes all the magnitude of the above units.
17 × drop/tiles = 4638
Make drop/tiles the subject of formula
Drop/tiles = 4638/17
Drop/tiles = 272.82
Therefore, 272.82 drop/tile drops fall on each tile?