Answer:
i got you dawg just gimme one sec i'll get to you fr g
Explanation:
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
You manage to find a bottle of bromothymol blue and a few extra beakers. You take one of the empty beakers and add some of the first unlabeled solution and some indicator.
The color changes to yellow.
You then add some solution from the other unlabeled flask into this beaker and see the color change to blue.
What are the identities of each unlabeled solution?
Explanation:
Bromothymol blue is a dye and it is used as an indicator.
It is used as a pH indicator.
In acids, it becomes yellow n in color.
In bases, it turns blue.
You take one of the empty beakers and add some of the first unlabeled solution and some indicator. The color changes to yellow.
That means the unlabeled solution is an acid.
You then add some solution from the other unlabeled flask into this beaker and see the color change to blue.
It is a basic solution.
They are both made out of atoms!