<h3>Given:</h3>
<h3>Volume of the cone:</h3>



<h3>Volume of the cylinder:</h3>



<h3>Total volume:</h3>


<u>Hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>cone</u><u> </u><u>shape</u><u> </u><u>is</u><u> </u><u>4188.7</u><u>9</u><u> </u><u>cubic</u><u> </u><u>centimeters</u><u>.</u>
The solution for this problem is:
The population is 500 times bigger since 8000/24 = 500. The population after t days is computed by:P(t) = P₀·4^(t/49)
Solve for t: 8000 = 8·4^(t/49) 1000 = 4^(t/49) log₄(1000) = t/49t = 49log₄(1000) ≅ 244 days
Answer:
Step-by-step explanation:
Its faster in adding isn't always right when you are multiplying numbers