Answer:
The answer to your question is below
Explanation:
Data
Substance = NaCl
moles of NaCl = 49
volume = 150 ml
Process
Molarity is a unit of concentration that makes a relation of the moles of a substance and the volume.
Molarity = moles / volume (L)
1.- Convert 150 ml to L
1000 ml ------------------ 1 L
150 ml ----------------- x
x = (150 x 1) / 1000
x = 0.15 L
2.- Substitution
Molarity = 49 / 0.15
Molarity = 326. 7
I have a doubt if the number of moles is 49 moles or 49μmoles
Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
Answer:
Use the Bromotriflouride catalyst, BF₃
Explanation:
The BF₃ is most likely to yield less desired side products. The effect lies in the reaction mechanism.
BF₃ is a Lewis acid. Its role is to promote the ionization of the HF. This is achieved through the electrophilic mechanism. The reaction mechanism is as follows:
2 - methylpropene + H-F-BF₃ → H-F + H₃C + benzene
butylbenzene + F-BF₃ → tert-butylbenzene + H-F + BF₃ (regenerated catalyst)
It’s positive when you use energy for work
C6H12O + 6OC2 + 6H2O + energy