Mg reaction with O₂ gas will produce MgO so the equation will be
2Mg+O₂⇒2MgO. (You have to find the equation in order two figure out the number of moles of O₂ that will react with 1 mole of MgO).
The first step is to find the number of moles of Mg in 4.03g of Mg. You can do this by dividing 4.03g Mg by its molar mass (which is 24.3g/mol) to get 0.1658mol Mg. Then you have to find the number of moles of O₂ that will react with 0.1658mol Mg. To do this you need to use the fact that 1mol O₂ will react with 2mol Mg (this reatio is from the chemical equation) so you have to multiply 0.1658mol Mg by (1mol O₂)/(2mol Mg) to get 0.0829mol O₂. From here you would usually use PV=nRT and solve for V However, the question tells us that we are at STP, that means you can use the fact that 22.4L of gas is 1 mol of gas at STP. Using that information we can find the volume of O₂ gas by mulitlying 0.0829mol O₂ by 22.4L/mol to get 1.857L which equals 1857mL.
therefore, 1857mL of O₂ gas will react with 4.03g of Mg.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
Potassium permanganate.
Explanation:
Both substances are dyes, but the methylene blue has a bigger molecular mass (319.85 g/mol), that means that the particles are bigger in comparison with the potassium permanganate that has a molecular mass of 158.034 g/mol.
Since the molar mass is the half in the case of potassium permanganate, it can be considered that the particle size is the half in size. In the agar, a smaller particle will present less resistance to flow, that means that it going to move faster.
The answer is affirmative because <span>dilutions give you a weaker Molarity
Plase see this in the dilution formula that follows:
C1V1 = C2V2
(0.50M) (10.00ml) = (C2) (100ml)
C2 = 0.050 M
10X's weaker
</span>Hope this helps a lot
The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>