The object<span> is moving with a decreasing acceleration. The </span>object<span> is moving with </span>a constant<span> velocity.</span>
Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
The wire vibrates back and forth between the poles of the magnet.
The frequency of the vibration is the frequency of the AC supply.
Answer:
Part a)

Part b)
Ball thrown downwards =
Ball thrown upwards =
Part c)

Explanation:
Part a)
Since both the balls are projected with same speed in opposite directions
So here the time difference is the time for which the ball projected upward will move up and come back at the same point of projection
Afterwards the motion will be same as the first ball which is projected downwards
so here the time difference is given as



Part b)
Since the displacement in y direction for two balls is same as well as the the initial speed is also same so final speed is also same for both the balls
so it is given as




Part c)
Relative speed of two balls is given as


now the distance between two balls in 0.8 s is given as


