Answer:

Explanation:
Hello there!
In this case, according to the required half-reaction, we start by setting it up from bismuth (V) oxide ion to bismuth (III) ion:

Thus, next realize that the oxidation state of Bi in BiO3^- is 5+ because oxygen is 2- (-2*3+x=-1;x=-1+6;x=+5), so we obtain:

Thereafter, we realize three water molecules are needed on the right in order to balance the oxygens and consequently 6 hydrogen atoms on the left to balance hydrogen:

Now, since the balance is is basic media, we add six molecules of hydroxide ions in order to produce water with the hydrogen ones:

Then, we accommodate the waters to obtain:

Best regards!
Moles= mass\ relative formula mass(Ar)
moles of zinc= 7.9/30= 0.263
so we have 0.263 moles of zinc, and you need twice the amount of chlorine so therefore 0.526moles of chlorine= 0.526x 17=8.942g of chlorine
i cba to work the rest out but the most reasonable answer is 0.24 mol however if you need to use working outs, use the formula i provided earlier
Answer:
there are approximately n ≈ 10²² moles
Explanation:
Since the radius of the earth is approximately R=6378 km= 6.378*10⁶ m , then the surface S of the earth would be
S= 4*π*R²
since the water covers 75% of the Earth's surface , the surface covered by water Sw is
Sw=0.75*S
the volume for a surface Sw and a depth D= 3 km = 3000 m ( approximating the volume through a rectangular shape) is
V=Sw*D
the mass of water under a volume V , assuming a density ρ= 1000 kg/m³ is
m=ρ*V
the number of moles n of water ( molecular weight M= 18 g/mole = 1.8*10⁻² kg/mole ) for a mass m is
n = m/M
then
n = m/M = ρ*V/M = ρ*Sw*D/M = 0.75*ρ*S*D/M = 3/4*ρ*4*π*R² *D/M = 3*π*ρ*R² *D/M
n=3*π*ρ*R² *D/M
replacing values
n=3*π*ρ*R² *D/M = 3*π*1000 kg/m³*(6.378*10⁶ m)² *3000 m /(1.8*10⁻² kg/mole) = 3*π*6.378*3/1.8 * 10²⁰ = 100.18 * 10²⁰ ≈ 10²² moles
n ≈ 10²² moles
Answer:
i think the answer is B cus i think of that
First blank -Same
Second blank-Neutral