Answer:
- <u><em>It will be less than 26 °C as water has a relatively higher specific heat than sand.</em></u>
Explanation:
The <em>specific heat </em>of a substance is the amount of heat energy absorbed by one unit of mass of the substance when its temperature increases one unit.
From that, you can derive the equation for the specific heat of a substance:
- specific heat = heat / (mass × ΔT)
Thus, assuming that all the heat provided by the lamp to both samples is the same and, as given, the amount (mass) of both samples is also the same, you have that the specific heat of the samples will be:
- specific heat = constant / ΔT
So, specific heat and ΔT are inversely related.
It is known that water has a higher specific heat than sand (that is why the sand on the shore of a beach is, during the day, hotter than the water and your feet get burned when you walk on a sandy beach on a sunny day).
Then, since the specific heat of water is greater than the specific heat of sand, the increase of temperature of water will be lower and, consequently, water will reach a lower final temperature than sand, when equal amounts of water and sand are heated as described in the experiment. This is the second choice: the final temperature of water is less than 26°C as water has a relatively higher specific heat than water.
Answer;
- A 100 mL graduated cylinder since it has marks showing the volume of the substance measured.
Explanation;
-A graduated cylinder or a measuring cylinder is a common piece of laboratory equipment used to measure precise volumes of a liquid.
-Graduated cylinders are specifically designed to measure out liquid volumes. Their tall narrow design makes for a more precise reading of the liquid level as compared to other pieces used to measure volume.
The answer for that is 16, math right?
It must be made of matter because anything and everything is made up of atoms. The other three options are made of atoms but they are also matter.
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.