Net force on the car=F=4.8 x 10³ N
Explanation:
mass of car= 1.2 x 10³ Kg
initial velocity= Vi=0
Final velocity= Vf= 20 m/s
time = t= 5 s
Using kinematic equation,
Vf= Vi + at
20= 0 + a (5)
5 a=20
a= 20/5
a= 4 m/s²
Now force is given by F = ma
F= 1.2 x 10³ (4)
F=4.8 x 10³ N
Answer:
71.19 C
Explanation:
25C = 25 + 273 = 298 K
Applying the ideal gas equation we have

where P, V and T are the pressure, volume and temperature of the gas at 1st and 2nd stage, respectively. We can solve for the temperature and the 2nd stage:

Answer:
The fractional kinetic energy will be lost if the collision is inelastic. In inelastic collision, the kinetic energy is converted into other forms of energy.
The lost energy became heat and sound energy.
Explanation:
During inelastic collision, the kinetic energy of a moving object does not conserve. It changes into another form of energy such as sound energy and heat energy etc.
For example, when a moving car hit another car or wall etc, the kinetic energy is converted into sound and heat energy. This type of collision is inelastic collision.
To answer these questions just use the equations for potential energy using the mass and heights described. the potential energy at the prescribed heights = the initial kinetic energy required to reach that height.
Make sure you calculate the force of gravity on the surface using the radius of the planet.