1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
3 years ago
12

समश्याजिक क्या है हाइड्रोजन का समस्थानियको समपस्य?​

Chemistry
1 answer:
LUCKY_DIMON [66]3 years ago
8 0

Answer:

GO

Explanation:

You might be interested in
Explain the term contact force and give examples​
aliya0001 [1]

Answer & Explanation:

In physics, a contact force is a force that acts at the point of contact between two objects, in contrast to body forces. Contact forces are described by Newton's laws of motion, as with all other forces in dynamics. Contact force is the force in which an object comes in contact with another object. Contact forces are also direct forces. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car up a hill or kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse.

3 0
3 years ago
Suppose a laboratory wants to identify an unknown pure substance. The valence electrons of the substance's atoms feel an effecti
zalisa [80]

Answer:

  • The answer is the third option in the list:<em> It would have smaller atomic radii than Si and higher ionization energies than Si.</em>

Explanation:

The<em> effective nuclear charge</em> is that portion of the total nuclear charge that a given electron in an atom feels.

Since, the inner electrons repel the outer electrons, t<em>he effective nuclear charg</em>e of a determined electron is the sum of the positive charge (number of protons or atomic number) that it feels from the nucleus less the number of electrons that are in the shells that are are closer to the nucleus than the own shell of such (determined) electron.

Mathematically, <em>the effective nuclear charge (Zeff)</em> is equal to the atomic number (Z) minus the amount (S) that other electrons in the atom shield the given (determined) atom from the nucleus.

  • Zeff = Z - S.

Since, the valence electrons are the electrons in the outermost shell of the atom, you can find certain trend for the value Zeff.

Let's look at the group to which Si belongs, which is the group 14. This table summarizes the relevant data:

Element   Z   Group   # valence electrons     S                      Zeff = Z - S

C              6      14                      4                     6 - 4 = 2             6 -  2 = +4

Si             14     14                      4                     14 - 4 = 10         14 - 10 = +4

Ge           32     14                     4                     32 - 4 = 28       32 -28 = +4

Sn           50     14                     4                     50 - 4 = 46       50 - 46 = +4

Pb           82     14                     4                     82 - 4 = 78        82 - 78 = +4  

With that, you have shown that the valence electrons of the unknown substance's atoms feel an effective nuclear charge of +4 and you have a short list of 4 elements which can be the unknown element: C, Ge, Sn or Pb.

The second known characteristic of the unknown substance's atoms is that it has a <em>higher electronegativity than silicon (Si)</em><em>.</em>

So, you must use the known trend of the electronegativity in a group of the periodic table: the electronegativity decreases as you go down in a group. So, three of the elements (Ge, Sn, and Pb) have lower electronegativity than Si, which has left us with only one possibility: the element C. The valence electrons of carbon (C) atoms feel an effective nuclear charge of +4 and it carbon has a higher electronegativity than silicon.

Other two periodic trends attending the group number are the <em>atomic radii and the ionization energy</em>.

The atomic radii generally increases as you go from top to bottom in a group. This is because you are adding electrons to new higher main energy levels. So, you can conclude that the originally unknwon substance (carbon) has a smaller atomic radii, than Si.

The ionization energies generally decreases as you go from top to bottom in a group. This os due to the shielding effect: as seen, the effective nuclear charge of the atom's valence electrons remains constant, while the distance of the electrons from the nucleus increases (the valence electrons are farther away from the nucleus), which means the upper the element in a given group, the larger the ionization energy of the atoms.

With this, our conclusions about the unnkown substance are:

  • Since it has a higher electronegativity value than silicon (Si), it is right up of Si, and there is on only element possible element than can be (C).

  • Since, it is upper than silicon (Si), it would have smaller atomic radii.

  • Due to the shielding effect, it would have larger ionization energies.

  • The answer is the third option in the list: It would have smaller atomic radii than Si and higher ionization energies than Si.

6 0
3 years ago
Lana balanced an equation so that the result was 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr. Which most likely represents the starting e
seropon [69]

Answer:

C2H3Br + O2 → CO2 + H2O + HBr

Explanation:

The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.

When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.

If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.

6 0
3 years ago
At 580 k, 6. 42% of the molecules are in the chair form. calculate the value of the equilibrium constant for the reaction as wri
Ann [662]
Equilibrium chemical reaction between chair and boat forms is:
Kc = \frac{[Boat form]}{[Chair form]}
Suppose the total number of molecules is x 
Number of molecules of chair form is 6.42/100 x
Number of molecules of boat form is 93.58/100 x
Kc = \frac{(0.9358x)}{(0.0642x)} = 14.6
5 0
3 years ago
Using the diagram below, which rock layer is older than the Chinle Formation?
Klio2033 [76]

Answer:

moenkopi formation because layers further down are always older. think about it as a pile of laundry the clothes at the bottom of the pile were worn earlier in the week and are older and dirtier.

Explanation:

also pls mark brainliest <3 :)))

3 0
3 years ago
Other questions:
  • What happens to the amount of energy when it is transferred from potential to kinetic?
    13·1 answer
  • Reduction and oxidation must occur together. The electrons from the oxidized species are transferred to the reduced species. Che
    14·1 answer
  • High self-monitors prefer situations in which clear expectations exist regarding how they're supposed to communicate. True False
    8·1 answer
  • Which process is similar to binary fission?
    8·1 answer
  • Which has the largest atomic radius magnesium silicon sulfur or sodium the smallest
    8·2 answers
  • A liquid solution can be made from solid, liquid, or gas solute.
    12·2 answers
  • Most people use the _____ for intercity travel
    15·2 answers
  • Element with atomic number greater than Oxygen.
    14·2 answers
  • How do covalent bonds form neutral compounds?
    9·1 answer
  • How many minutes would be required to produce a mass of 6. 38 g al using a current of 12. 50 amps?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!