Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
FBI Fedral Burea of Investagation
Answer : Option C) The Octet Rule
Explanation : Atoms have a tendency to complete their outer energy level. This is known as Octet Rule.
The octet rule is a chemical rule of thumb which reflects the observation, that atoms of main-group elements tends to combine in such a way that each atom gets eight electrons in its valence shell, which gives it the same electron configuration as that of a noble gas.
In short, the tendency of an atom to fill its valence shell and attain a stable state it acquires or donates the electron is called as octet rule.
Fusion is joining two or more things together in resulting of the form of one thing
Melting is to make something liquefied by the use of heat
NaH(s)+ H2O (l)=>NaOH(aq)+H2(g)
You want to calculate the mass of NaH, I assume. Otherwise, the question isn't clear. It simply says calculate the mass(??)
So, calculate the moles of H2 gas that satisfy the conditions of 982 ml at 28ºC and 765 torr. But you must subtract the vapor pressure of water at 28º to get the actual pressure of the H2 gas. So, the actual conditions are 982 ml (0.982 L) and 301 K and 765-28 = 737 torr.
PV = nRT
n = PV/RT = (737 torr)(0.982 L)/(62.4 L-torr/Kmol)(301 K)
n = 0.0385 moles H2
moles NaH needed = 0.0385 moles H2 x 1 mole NaH/mole H2 = 0.0385 moles NaH required
mass of NaH needed = 0.0385 moles x 24 g/mole = 0.925 g NaH
Brainliest Please :)