Answer:
The correct answer is 0.0033 L (33.0 mL)
Explanation:
We uses the Charles's law which describes the changes in the volume (V) of a gas and its temperature in Kelvin (T) at constant pressure. The mathematical expression is the following:
V₁/T₁ = V₂/T₂
We have the following data:
V₁= 31.0 mL = 0.0031 L
T₁= 19.0°C = 292 K
T₂= 38.0°C = 311 K
V₂= ?
We calculate V₂ from the mathematical expression, as follows:
V₂= V₁/T₁ x T₂ = 0.0031 L/(292 K) x 311 K = 0.0033 L
Answer: ok ill just take my points in dip
Explanation:
Answer:
Explanation:
conjugate acid, based on Brønsted–Lowry acid–base theory, is a chemical compound that is formed by the reception of a proton by a base
a. CH₃COOH + H₂O ⇌ H₃0⁺ + CH₃C00-
Acid <> CH₃COOH
Base <> H₂O
Conjugate acid <> H₃0 +
Conjugate base <>CH₃C00-
b. HCO₃ + H₂O ⇌ H₂CO₃⁻ + OH⁻
Acid <> H₂O
Base <> HCO₃
Conjugate acid <> H₂CO₃⁻
Conjugate base <>OH⁻
C. HNO₃ + SO₄²⁻ ⇌ HSO₄⁻ + NO₃⁻
Acid <>HNO₃
Base <>SO₄²⁻
Conjugate acid <>HSO₄⁻
Conjugate base <>NO₃⁻
A Bronsted acid is reffered to as a proton donor while a Bronsted base is a proton acceptor
Answer:
c. Can't decide with information given.
Explanation:
The chemical and physical processes can be classified as endothermic or exothermic. The first one happens when the system absorbs heat, so the temperature of the surroundings will decrease, and the other one happens when the system releases heat, then the temperature of the surrounds will increase.
Precipitation is the formation of a solid in a solution. The process can happen with absorption or release of heat, it depends on the substance. So, with the information given it's impossible to say it.
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s