Answer:
single replacement reaction
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
Answer:mile
Explanation: heres a hint think aboyt the distance between your house to school
Spring C stretches 100 cm.
Explanation:
The spring constant is simply the stiffness of the spring. The higher the spring constant the more stiff the spring is.
Spring constant shows the force needed to stretch a spring from it's equilibrium position. If a material requires more force to cause it to stretch, it will have a high spring constant.
According to hooke's law "the force needed to extended an elastic material is directly proportional to its extension"
F = ke
k is the spring constant
e is the extension
We see that the spring that stretches by 100 is the less stiff compared to other springs. It has the smallest spring constant.
Learn more;
Force brainly.com/question/8882476
#learnwithBrainly
Answer:
Current = 10 Amperes.
Explanation:
Given the following dat;
Quantity of charge, Q = 36 kilocoulombs (KC) = 36 * 1000 = 36000C
Time = 1 hour to seconds = 60*60 = 3600 seconds
To find the current;
Quantity of charge = current * time
Substituting in the equation
36000 = current * 3600
Current = 36000/3600
Current = 10 Amperes.