Answer: The gravitational
Explanation: The student is pushing the box so u have to have gravitational force so it could move
Answer: Water can either increase or decrease the friction between surfaces.
The formula for acceleration is a = F/m; Where: F = force; m = mass
Given: F = .6n; m = .4kg; a = ?
a = F/m
= .6/.4
= 1.5
Therefore, the acceleration of the plate is 1.5 m/s^2
Answer:
Explanation:
Since fluid is pumping in and out at the same rate (5L/min), the total fluid volume in the tank stays constant at 350L. Only the amount of salt and its concentration changed overtime.
Let A(t) be the amount of salt (g) at time t and C(t) (g/L) be the concentration at time t
A(0) = 10 g
Brine with concentration of 1g/L is pouring in at the rate of 5L/min so the salt income rate is 5 g/min
The well-mixed solution is pouring out at the rate of 5L/min at concentration C(t) so the salt outcome rate is 5C g/min
But the concentration is total amount of salt over 350L constant volume
C = A / 350
Therefore our rate of change for salt A' is
A' = 5 - 5A/350 = 5 - A/70
This is a first-order linear ordinary differential equation and it has the form of y' = a + by. The solution of this is
So
with A(0) = 10
c + 350 = 10
c = 10 - 350 = -340
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:
d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.
where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get
It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.