Ionization energy: the energy required to remove an electron from a neutral atom. Electron affinity: the energy change when a neutral atom attracts an electron to become a negative ion.
<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
The values for hydroxide ions, hydronium ions and pH are found in the attached picture.
Explanation:
See the attached picture.
Learn more about:
pH
brainly.com/question/1525823
#learnwithBrainly
V
1
/T
1
=V
2
/T
2
(900.0 mL) / (300.0 K) = (x) / (405.0 K); x = 1215 mL.
Change the 900 to 800, and the 300 to 27, then change the 405 to 132. And solve