Hey, lovely! It's a pretty lengthy process but here is a pretty clear video on how to do it. Hope this helps ya!
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/balancing-chemical-equat...
Answer: 0.52V
Explanation:
Ecell = Ecell(standard) - [(0.0592 logQ)/n]
Q = product of the quotient
n = no of electrons transferred = 2
Ecell = 0.63 - [(0.0592*Log(1 / 2.0 * 10-4) / 2]
Ecell = 0.63 - 0.0194
Ecell = 0.5205V
The answer is 5.32 × 10²³ molecules
<span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance:
</span>6.023 <span>× 10²³ units per 1 mole
We have 0.883 moles.
If 1 mole has </span>6.023 × 10²³ molecules, 0.883 moles will have x molecules:
1 mole : 6.023 × 10²³ molecules = 0.883 moles : x
x = 6.023 × 10²³ molecules * 0.883 moles : 1 mole = 5.32 × 10²³ molecules
The Law of Conservation of Mass states that the mass of reactants entering a reaction must be equal to the mass of the products exiting it. In this case, we only have 2 reactants, Fe and S, and we only have 1 product, FeS. Therefore we expect the total mass of the Fe and S reactants to equal the mass of FeS. This gives us 112 g + 64 g = 176 g of FeS, which is choice D.