Use the ideal gas law:
<em>PV=nRT
</em>p = pressure
v = volume
n = number of moles of sample
R = ideal gas constant = ~0.08206 (l*atm)/(K*mole)
T = Temp in Kelvin
Now we substitute while simultaneously solving for P(pressure)
P = (nRT)/V
P = (2.50 * 0.08206 * (27+273.15)) / 50
P = Now it's your turn.
<u>Answer:</u>
Earth's axis and position around the sun.
<u>Explanation:</u>
Earth's tilted axis causes the seasons to change. Throughout the year, different parts of Earth acquire the Sun's most direct rays(Or heat) because of the orbital rotation of Earth. So, when the North Pole tilts toward the Sun, it's summer inside the Northern Hemisphere. And whilst the South Pole tilts towards the Sun, it is winter within the Northern Hemisphere and vise versa.
<span>12.4 g
First, calculate the molar masses by looking up the atomic weights of all involved elements.
Atomic weight manganese = 54.938044
Atomic weight oxygen = 15.999
Atomic weight aluminium = 26.981539
Molar mass MnO2 = 54.938044 + 2 * 15.999 = 86.936044 g/mol
Now determine the number of moles of MnO2 we have
30.0 g / 86.936044 g/mol = 0.345081265 mol
Looking at the balanced equation
3MnO2+4Al→3Mn+2Al2O3
it's obvious that for every 3 moles of MnO2, it takes 4 moles of Al. So
0.345081265 mol / 3 * 4 = 0.460108353 mol
So we need 0.460108353 moles of Al to perform the reaction. Now multiply by the atomic weight of aluminum.
0.460108353 mol * 26.981539 g/mol = 12.41443146 g
Finally, round to 3 significant figures, giving 12.4 g</span>
Answer:
A chemical change has occurred, with energy being given off.
Explanation:
The liquids mix and the stick gives off energy in light form