To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
Hey there :)
We can see that the solubility of salt increases with increasing temperature. This happens with most substances.
To find out the maximum mass of copper sulfate that can be dissolved in water at these temperatures, just interpret the graph.
Considering Y-axis as g copper sulfate/100 g water and the X-axis as the temperature in °C:-
<u>1)</u>
a: <u>0 °C - 14 g of copper sulfate/100 g of water</u>
b: <u>50 °C - 34 g of copper sulfate/100 g of water</u>
c: <u>90 °C - 66 g of copper sulfate/100 g of </u><u>water</u>
<u>2)</u> From the graph, we can infer that temperature affects the solubility of the salt.
<em>Answered</em><em> </em><em>by</em><em> </em><em>Benjemin360</em><em> </em>:)
Answer choice would be D, answer choice B, is the boxes net force. Velocity = distance/time. The correct answer is D. I hope this helps!