Answer:
11.45kcal/g
2.612 × 10³ kcal
Explanation:
When a compound burns (combustion) it produces carbon dioxide and water. The combustion of 2-methylheptane can be represented by the following balanced equation:
2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O
It releases 1.306 × 10³ kcal every 1 mol of C₈H₁₈ that is burned.
<em>What is the heat of combustion for 2-methylheptane in kcal/gram?</em>
We know that the molar mass of C₈H₁₈ is 114.0g/mol. Then, using proportions:

<em>How much heat will be given off if molar quantities of 2-methylheptane react according to the following equation? 2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O</em>
In this equation we have 2 moles of C₈H₁₈. So,

Answer: The temperature rise is 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed by ice = 5280 J
m = mass of ice = 2.40 kg = 2400 g (1kg=1000g)
c = heat capacity of water = 
Initial temperature =
Final temperature =
Change in temperature ,
Putting in the values, we get:


Thus the temperature rise is 
Answer:
ΔG = - 590.20 kJ/mol
Explanation:
The formula for calculating Gibb's Free Energy can be written as:
ΔG = ΔH - TΔS
Given That:
ΔH = -720.5 kJ/mol
T = 221.0°C = (221.0 + 273.15) = 494.15 K
ΔS° = -263.7 J/K
So; ΔS° = -0.2637 kJ/K if being converted from joule to Kilo-joule
Since we are all set, let replace our given data in the above equation:
ΔG = (-720.5 kJ/mol) - (494.15 K) ( - 0.2637 kJ/K)
ΔG = (-720.5 kJ/mol) - (- 130.30755)
ΔG = -720.5 kJ/mol + 130.30755
ΔG = -590.192645 kJ/mol
ΔG = - 590.20 kJ/mol
Thus, The value of ΔG° at 221.0°C for the formation of phosphorous trichloride from its constituent elements, P2(g) + 3Cl2(g) → 2PCl3(g) is <u>-590.20</u> kJ/mol.
Answer : The total pressure at equilibrium is 0.350 atm
Solution : Given,
Initial pressure of
= 0.350 bar
= 0.016
The given equilibrium reaction is,

Initially 0.350 0 0
At equilibrium (0.350-2x) x x
The total pressure at equilibrium = 
Thus, the total pressure at equilibrium is 0.350 atm