Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Answer:
Strong acid
Explanation:
An acid is a substance that interacts with water to produce excess hydroxonium ions in an aqueous solution.
Hydroxonium ions are formed as a result of the chemical bonding between the oxygen of water molecules and the protons released by the acid due to its ionisation. This makes aqueous solution of acids conduct electricity.
A strong acid is one that ionizes almost completely. Examples are:
1. Hydrochloric acid
2. Tetraoxosulphate (VI) acid
3. Trioxonitrate (V) acid
4. Hydroiodic acid
5. Hydrobromic acid
Answer:
light travels as a wave. but unlike sound waves or water waves, it doesn't need any matter or material to carry it's energy along
According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M
Answer:
5=C, every action has an equal or opposite reaction,
6=B, since it has less air drag and more force exerted on it
7= You're correct