Answer:
82.4 cm
Explanation:
∑F = ma
kx cos θ = ma
x = ma / (k cos θ)
x = (10 kg) (5 m/s²) / (70 N/m cos 30.0°)
x = 0.824 m
x = 82.4 cm
Answer:
a = 9.86 m/s²
Explanation:
given,
distance between the centers of wheel = 156 cm
center of mass of motorcycle including rider = 77.5 cm
horizontal acceleration of motor cycle = ?
now,
The moment created by the wheels must equal the moment created by gravity.
take moment about wheel as it touches the ground, here we will take horizontal distance between them.
then, take the moment around the center of mass. Since the force on the ground from the wheels is horizontal, we need the vertical distance.
now equating both the moment
m g d = F h
d is the horizontal distance
h is the vertical distance
m g d = m a h
term of mass get eliminated
g d = a h
so,


a = 9.86 m/s²
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Answer:Explained below.
Explanation:
Uranus rings is made up of jet black, coal-like particles in small bands, making them difficult to perceive from Earth.This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of material is dismal, but it might be some organic compounds greatly darkened by the charged particle irradiation from the Uranian magnetosphere. Rings were discovered by using a infrared telescope throughout the occultation of a star as Uranus passed in front of it. The light from the star dimmed many times before it was obstructed by the disk of Uranus and subsequently, showing the presence of various distinct rings.