A Cell with few energy needs would most likely contain a small number of Mitochondria.
- All cells require energy to function, but cells typically have significant energy needs that can only be met by the mitochondria, the cell's powerhouse.
- They transform glucose into ATP, a chemical with a huge energy storage capacity.
- Muscles have a large number of mitochondria, allowing them to react rapidly and powerfully to the body's ongoing need for energy.
- Macromolecules, defunct cell components, and microbes are all digested by lysosomes.
- Vacuoles are typically tiny and aid in the sequestration of waste.
- The ribosome, an intercellular structure consisting of both RNA and protein, is where a cell produces new proteins.
Therefore out of all these cell organelles, the cell has fewer mitochondria for less energy need.
Learn more about cell organelles here:
brainly.com/question/13408297
#SPJ9
There are 2.32 x 10^6 kg sulfuric acid in the rainfall.
Solution:
We can find the volume of the solution by the product of 1.00 in and 1800 miles2:
1800 miles2 * 2.59e+6 sq m / 1 sq mi = 4.662 x 10^9 sq m
1.00 in * 1 m / 39.3701 in = 0.0254 m
Volume = 4.662 x 10^9 m^2 * 0.0254 m
= 1.184 x 10^8 m^3 * 1000 L / 1 m3
= 1.184 x 10^11 Liters
We get the molarity of H2SO4 from the concentration of [H+] given by pH = 3.70:
[H+] = 10^-pH = 10^-3.7 = 0.000200 M
[H2SO4] = 0.000100 M
By multiplying the molarity of sulfuric acid by the volume of the solution, we can get the number of moles of sulfuric acid:
1.184 x 10^11 L * 0.000100 mol/L H2SO4 = 2.36 x 10^7 moles H2SO4
We can now calculate for the mass of sulfuric acid in the rainfall:
mass of H2SO4 = 2.36 x 10^7 moles * 98.079 g/mol
= 2.32 x 10^9 g * 1 kg / 1000 g
= 2.32 x 10^6 kg H2SO4
Answer: 3.01 * 10^35
Explanation:
500,000,000,000 * 6.02 * 10^23
The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
Answer:
Explanation:
Sodium chloride is ionic compound. It is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion. Both atoms are bonded together electrostatic attraction occur between anion and cations.
Sodium atom have one valance electron by losing this one valance electron sodium atom get the complete octet. Chlorine atom has seven valance electrons and needed to lose seven valance electrons or to get one electron and thus complete the octet. It is very easy for chlorine atom to get one electrons instead of losing all seven electron. Thus when it react with sodium it gain the valance electron of sodium and form ionic compound.
That's why only one atom of sodium combine with one atom chlorine.