Mass Percent of Hydrogen. To find the mass percent of hydrogen in water, take the molar mass of hydrogen in the water molecule, divide by the total molar mass of water, and multiply by 100. Dividing 2.016 by 18.016 gives you 0.1119. Multiply 0.1119 by 100 to get the answer: 11.19 percent
<u>Answer: </u>One isotope has a percentage abundance of 75.75 % and the percentage abundance of another isotope is 24.24%.
<u>Explanation:</u>
We are given the two stable isotopes of chlorine with their respective masses. The average atomic mass of chlorine is also given.
Average atomic mass of chlorine = 35.45 amu.
Let us assume the fractional abundance of one isotope be 'x' and the fractional abundance for another isotope will be (1 - x) because the total fractional abundance is always equal to 1.
Fractional abundance = x
Mass = 34.97 amu
Fractional abundance = 1 - x
Mass = 36.95 amu
The formula for the calculation of average atomic mass is given by:

Putting values in above equation, we get:


Converting these two fractional abundances into percentage abundances by multiplying it with 100.

Hence, one isotope has a percentage abundance of 75.75 % and the percentage abundance of another isotope is 24.24%.
Answer:
The first agrument.
Explanation:
Because only heat can be transfered. Thats why if you put something hot in a refridgerator the heat energy will go off in the fridge and powers the cold energy. Im pretty sure this is right this is what my teachers tought me so i hope they right
Answer:
Ek = (RT/zF)*ln ( [k+]o/[K+]i )
Explanation:
R = gas constant (8.31 J/Kmol)
T = Temperature (k)
F = Faraday constant (9.65 * 10exp4 coulomb/mole)
z = valence of the ion (1)
[k+]o = Extracellular K concentration in mM
[K+]i = Intracellular K concentration in mM
ln = logarithm with base e