Comets are usually formed of ice and other suave debris, while asteroids typically contain metals.
Answer:
2.64 × 10⁶ g
Explanation:
We can find the mass of air using the ideal gas equation.

where,
P is the pressure (P = 1.00 atm)
V is the volume (V = 2.95 × 10⁶ L)
n is the number of moles
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (121°C + 273 = 394 K)
m is the mass
M is the molar mass (28.09 g/mol)

B.
I think this is right.
If it is not I apologize
The empirical formula is Ca₃P₂O₈.
<em>Assume</em> that you have 100 g of the compound.
Then you have 38.76 g Ca, 19.97 g P, and 41.28 g O.
Now, we must convert these <em>masses to moles</em> and <em>find their ratio</em>s.
If the number in the ratio are not close to integers, you <em>multiply them by a numbe</em>r that makes them close to integers.
From here on, I like to summarize the calculations in a table.
<u>Element</u> <u>Mass/g</u> <u> Moles </u> <u> </u><u>Ratio </u> <u> ×2 </u> <u>Integers</u>
Ca 38.76 0.967 07 1.4998 2.9995 3
P 19.97 0.644 82 1 2 2
O 41.28 2.580 0 4.0011 8.0023 8
The empirical formula is Ca₃P₂O₈.