One of the results is that the moon is near the earth and the other one, the oceans tide. Even though the earth can hold any object within
ts proximity, the ocean is partly attracted due to its liquid property. At night, the ocean tends to be attracted to the moon by creating a bulge and assigning it as ‘high tide’. This is due to the strong gravitational pull of th moon to the earth.
I hope this helps!
This might be right..
Answer:
5.0 × 10²⁴ molecules
Explanation:
Step 1: Write the balanced double displacement reaction
2 NaOH + CuSO₄ ⇒ Na₂SO₄ + Cu(OH)₂
Step 2: Calculate the moles corresponding to 5.0 × 10²⁴ molecules of Na₂SO₄
We will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
5.0 × 10²⁴ molecule × 1 mol/6.02 × 10²³ molecule = 8.3 mol
Step 3: Calculate the moles of CuSO₄ required to produce 8.3 moles of Na₂SO₄
The molar ratio of CuSO₄ to Na₂SO₄ is 1:1. The moles of CuSO₄ required are 1/1 × 8.3 mol = 8.3 mol.
Step 4: Calculate the molecules corresponding to 8.3 moles of CuSO₄
We will use Avogadro's number.
8.3 mol × 6.02 × 10²³ molecule/1 mol = 5.0 × 10²⁴ molecule
Answer:
Explanation:
mole of O₂ = 
= .25 moles
mole of CO₂
= 
= .1818 moles
moles of SO₂

= .125 moles
Total moles of gas
= .5568 moles.
total volume of gas mixture
= 22.4 x .5568 liter ( volume of one mole of any gas = 22.4 liter)
= 12.47 liter.
gas will exert partial pressure according to their mole fraction
gas having greatest no of moles in the total mole will have greatest mole fraction so
O₂ will have greatest partial pressure.