Difference between Gas and Vapour:
Gas:
A thermodynamic state in which a substance exists only in one phase i.e. Gas phase. In above given examples N₂, He and CO₂ exists as gases at room temperature. These gases cannot form a solid or liquid phase along with gas phase as these states requires very low temperatures.
Vapours:
It is a thermodyanamic state in which a substance exists in more than one phase. In given options Sulfur can exist in vapor state. This is because sulfur exists in a cyclic or chain form due to catenation (self linkage property). Therefore, a lower members of S allotrops can form a vapours.
The atomic theory started with Democritus, who stated that all space was made up of indivisible particles called atoms, though Aristotles refuted that statement by saying that matter didn’t exist, he believed in the four elements: air, fire, water, and earth. Then came Dalton, who revived Democritus’s ideas and proposed the law of multiple proportions, he revived the idea that all space was made of atoms. Soon after, J.J Thompson discovered the electron by using cathode rays. Max Planck developed the quantum theory by stating that electromagnetic radiation could only be emitted in quantized form (later called quanta). Einstein furthered this idea with studies of light. Robert Millikan eventually measured the charge of a single electron. Ernest Rutherford used a gold foil experiment and discovered the nuclei, considering his alpha particles were deflected by some object. Niels Bohr made the atomic model with electrons spinning around an atom’s nucleus, Erwin Schrodinger describes how electrons have wave like properties. James Chadwick then discovers the neutron!
There ya have it!
<span>The characteristics of a wave are given certain names to describe them, and this helps scientists to accurately describe any given wave. The characteristic known as frequency describes the number of waves that pass a point, and it is measured in waves per second, or Hertz, which is given the symbol Hz, but can also be described using the inverse of the SI unit for second, s^-1.</span>
2.3226678127494718
this number you could probably simplify to your own standards on your own.