Answer:
B.
Explanation:
For a given set of input values, A NAND gate produces exactly the same values as an OR gate with inverted inputs.
The truth table for a NAND gate with 2 inputs is as follows:
0 0 1
0 1 1
1 0 1
1 1 0
The truth table for an OR gate, is as follows:
0 0 0
0 1 1
1 0 1
1 1 1
If we add two extra columns for inverted inputs, the truth table will be this one:
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0
which is the same as for the NAND gate, not the opposite, so the statement is false.
This means that the right choice is B.
Answer:
P=361.91 KN
Explanation:
given data:
brackets and head of the screw are made of material with T_fail=120 Mpa
safety factor is F.S=2.5
maximum value of force P=??
<em>solution:</em>
to find the shear stress
T_allow=T_fail/F.S
=120 Mpa/2.5
=48 Mpa
we know that,
V=P
<u>Area for shear head:</u>
A(head)=π×d×t
=π×0.04×0.075
=0.003×πm^2
<u>Area for plate:</u>
A(plate)=π×d×t
=π×0.08×0.03
=0.0024×πm^2
now we have to find shear stress for both head and plate
<u>For head:</u>
T_allow=V/A(head)
48 Mpa=P/0.003×π ..(V=P)
P =48 Mpa×0.003×π
=452.16 KN
<u>For plate:</u>
T_allow=V/A(plate)
48 Mpa=P/0.0024×π ..(V=P)
P =48 Mpa×0.0024×π
=361.91 KN
the boundary load is obtained as the minimum value of force P for all three cases. so the solution is
P=361.91 KN
note:
find the attached pic
Answer:
It should be in Park or Neutral.
Explanation:
John Smeatom, U.K. 18th century, was the first self-proclaimed, civil engineer in the 18th century and IS considered “the father of modern, civil engineering”.
hoped this helped! :)