The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Answer:
5 sq. root 3
Explanation:
theta= 60°
=> u sin theta = 10 × sin 60
= 10× sq. root 3/2
= 5 sq. root 3
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Answer: A.AB
Explanation:
This Velocity vs Time graph shows the acceleration of a body or object, since acceleration is the variation of velocity in time.
As we can see in the attached image, the graph can be divided in four segments:
OA: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a positive slope, hence we are dealing with a positive uniform acceleration.
AB: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be positive. This means the <u>acceleration is nonuniform and positive.</u>
BC: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be negative. This means the acceleration is nonuniform and negative.
CD: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a negative slope, hence we are dealing with a negative uniform acceleration.
From all these segments, the only one that fulfils the nonuniform positive acceleration condition is option A:
Segment AB